840 research outputs found

    Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study.

    Get PDF
    BACKGROUND: Therapies targeting HER2 have improved clinical outcomes in HER2-positive breast and gastric cancers, and are emerging as potential treatments for HER2-positive metastatic colorectal cancer. MyPathway evaluates the activity of targeted therapies in non-indicated tumour types with potentially predictive molecular alterations. We aimed to assess the activity of pertuzumab and trastuzumab in patients with HER2-amplified metastatic colorectal cancer. METHODS: MyPathway is an ongoing, phase 2a, multiple basket study. Patients in this subset analysis were aged 18 years or older and had treatment-refractory, histologically confirmed HER2-amplified metastatic colorectal cancer with measurable or evaluable disease and an Eastern Cooperative Oncology Group performance status score of 2 or less, enrolled from 25 hospitals or clinics in 16 states of the USA. Patients received pertuzumab (840 mg loading dose, then 420 mg every 3 weeks, intravenously) and trastuzumab (8 mg/kg loading dose, then 6 mg/kg every 3 weeks, intravenously). The primary endpoint was the proportion of patients who achieved an objective response based on investigator-reported tumour responses. Analyses were done per protocol. This ongoing trial is registered with ClinicalTrials.gov, number NCT02091141. FINDINGS: Between Oct 20, 2014, and June 22, 2017, 57 patients with HER2-amplified metastatic colorectal cancer were enrolled in the MyPathway study and deemed eligible for inclusionin this cohort analysis. Among these 57 evaluable patients, as of Aug 1, 2017, one (2%) patient had a complete response and 17 (30%) had partial responses; thus overall 18 of 57 patients achieved an objective response (32%, 95% CI 20-45). The most common treatment-emergent adverse events were diarrhoea (19 [33%] of 57 patients), fatigue (18 [32%] patients), and nausea (17 [30%] patients). Grade 3-4 treatment-emergent adverse events were recorded in 21 (37%) of 57 patients, most commonly hypokalaemia and abdominal pain (each three [5%] patients). Serious treatment-emergent adverse events were reported in ten (18%) patients and two (4%) of these adverse events (ie, chills and infusion-related reaction) were considered treatment related. There were no treatment-related deaths. INTERPRETATION: Dual HER2-targeted therapy with pertuzumab plus trastuzumab is well tolerated and could represent a therapeutic opportunity for patients with heavily pretreated, HER2-amplified metastatic colorectal cancer. FUNDING: F Hoffmann-La Roche/Genentech

    Human Telomerase Reverse Transcriptase (hTERT) Q169 Is Essential for Telomerase Function In Vitro and In Vivo

    Get PDF
    BACKGROUND:Telomerase is a reverse transcriptase that maintains the telomeres of linear chromosomes and preserves genomic integrity. The core components are a catalytic protein subunit, the telomerase reverse transcriptase (TERT), and an RNA subunit, the telomerase RNA (TR). Telomerase is unique in its ability to catalyze processive DNA synthesis, which is facilitated by telomere-specific DNA-binding domains in TERT called anchor sites. A conserved glutamine residue in the TERT N-terminus is important for anchor site interactions in lower eukaryotes. The significance of this residue in higher eukaryotes, however, has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:To understand the significance of this residue in higher eukaryotes, we performed site-directed mutagenesis on human TERT (hTERT) Q169 to create neutral (Q169A), conservative (Q169N), and non-conservative (Q169D) mutant proteins. We show that these mutations severely compromise telomerase activity in vitro and in vivo. The functional defects are not due to abrogated interactions with hTR or telomeric ssDNA. However, substitution of hTERT Q169 dramatically impaired the ability of telomerase to incorporate nucleotides at the second position of the template. Furthermore, Q169 mutagenesis altered the relative strength of hTERT-telomeric ssDNA interactions, which identifies Q169 as a novel residue in hTERT required for optimal primer binding. Proteolysis experiments indicate that Q169 substitution alters the protease-sensitivity of the hTERT N-terminus, indicating that a conformational change in this region of hTERT is likely critical for catalytic function. CONCLUSIONS/SIGNIFICANCE:We provide the first detailed evidence regarding the biochemical and cellular roles of an evolutionarily-conserved Gln residue in higher eukaryotes. Collectively, our results indicate that Q169 is needed to maintain the hTERT N-terminus in a conformation that is necessary for optimal enzyme-primer interactions and nucleotide incorporation. We show that Q169 is critical for the structure and function of human telomerase, thereby identifying a novel residue in hTERT that may be amenable to therapeutic intervention

    Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application

    Get PDF
    The Fas/FasL system plays an important role in apoptosis, the inflammatory response and gliosis in a variety of neurologic disorders. A better understanding of these mechanisms could lead to effective therapeutic strategies following spinal cord injury (SCI). We explored these mechanisms by examining molecular changes in postmortem human spinal cord tissue from cases with acute and chronic SCI. Complementary studies were conducted using the in vivo Fejotaβ„’ clip compression model of SCI in Fas-deficient B6.MRL-Fas-lpr (lpr) and wild-type (Wt) mice to test Fas-mediated apoptosis, inflammation, gliosis and axonal degeneration by immunohistochemistry, Western blotting, gelatin zymography and ELISA with Mouse 32-plex cytokine/chemokine panel bead immunoassay. We report novel evidence that shows that Fas-mediated apoptosis of neurons and oligodendrocytes occurred in the injury epicenter in all cases of acute and subacute SCI and not in chronic SCI or in control cases. We also found significantly reduced apoptosis, expression of GFAP, NF-ΞΊB, p-IKappaB and iba1, increased number of CD4 positive T cells and MMP2 expression and reduced neurological dysfunction in lpr mice when compared with Wt mice after SCI. We found dramatically reduced inflammation and cytokines and chemokine expression in B6.MRL-Fas-lpr mice compared to Wt mice after SCI. In conclusion, we report multiple lines of evidence that Fas/FasL activation plays a pivotal role in mediating apoptosis, the inflammatory response and neurodegeneration after SCI, providing a compelling rationale for therapeutically targeting Fas in human SCI

    B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis

    Get PDF
    Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where β‰ˆ60% of B cells are located within granulomas, with that of naΓ―ve mice. In infected mice, there was a small increase in mIgMlomIgD+ mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naΓ―ve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site

    In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice

    Get PDF
    We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale

    Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Get PDF
    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel

    Ashwagandha Leaf Derived Withanone Protects Normal Human Cells Against the Toxicity of Methoxyacetic Acid, a Major Industrial Metabolite

    Get PDF
    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates

    PDE 7 Inhibitors: New Potential Drugs for the Therapy of Spinal Cord Injury

    Get PDF
    BACKGROUND: Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs), which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA) methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score), and TNF-Ξ±, IL-6, COX-2 and iNOS expression. CONCLUSIONS/SIGNIFICANCE: All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI

    Olprinone Attenuates the Acute Inflammatory Response and Apoptosis after Spinal Cord Trauma in Mice

    Get PDF
    BACKGROUND: Olprinone hydrochloride is a newly developed compound that selectively inhibits PDE type III and is characterized by several properties, including positive inotropic effects, peripheral vasodilatory effects, and a bronchodilator effect. In clinical settings, olprinone is commonly used to treat congestive cardiac failure, due to its inotropic and vasodilating effects. The mechanism of these cardiac effects is attributed to increased cellular concentrations of cAMP. The aim of the present study was to evaluate the pharmacological action of olprinone on the secondary damage in experimental spinal cord injury (SCI) in mice. METHODOLOGY/PRINCIPAL FINDINGS: Traumatic SCI is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should be preventable, no effective treatment options currently exist for patients with SCI. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, apoptosis, and locomotor disturbance. Olprinone treatment (0.2 mg/kg, i.p.) 1 and 6 h after the SCI significantly reduced: (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation, (4) pro-inflammatory cytokines, (5) NF-kappaB expression, (6) p-ERK1/2 and p38 expression and (7) apoptosis (TUNEL staining, FAS ligand, Bax and Bcl-2 expression). Moreover, olprinone significantly ameliorated the recovery of hind-limb function (evaluated by motor recovery score). CONCLUSIONS/SIGNIFICANCE: Taken together, our results clearly demonstrate that olprinone treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma

    Skin parasite landscape determines host infectiousness in visceral leishmaniasis

    Get PDF
    Increasing evidence suggests that the infectiousness of patients for the sand fly vector of visceral leishmaniasis is linked to parasites found in the skin. Using a murine model that supports extensive skin infection with Leishmania donovani, spatial analyses at macro-(quantitative PCR) and micro-(confocal microscopy) scales indicate that parasite distribution is markedly skewed. Mathematical models accounting for this heterogeneity demonstrate that while a patchy distribution reduces the expected number of sand flies acquiring parasites, it increases the infection load for sand flies feeding on a patch, increasing their potential for onward transmission. Models representing patchiness at both macro- and micro-scales provide the best fit with experimental sand fly feeding data, pointing to the importance of the skin parasite landscape as a predictor of host infectiousness. Our analysis highlights the skin as a critical site to consider when assessing treatment efficacy, transmission competence and the impact of visceral leishmaniasis elimination campaigns.Parasitemia has been considered the main determinant of visceral leishmaniasis transmission. By combining imaging, qPCR and experimental xenodiagnoses with mathematical models, Doehl et al. argue that the patchy landscape of parasites in the skin is necessary to explain infectiousness
    • …
    corecore